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Abstract

Introduction: Accumulating evidence indicates that the amygdala exhibits early signs

of Alzheimer’s disease (AD) pathology. However, it is still unknown whether the atro-

phy of distinct subfields of the amygdala also participates in the transition fromhealthy

cognition tomild cognitive impairment (MCI).

Methods: Our sample was derived from the AD Neuroimaging Initiative 3 and con-

sisted of 97 cognitively healthy (HC) individuals, sorted into two groups based on their

clinical follow-up: 75who remained stable (s-HC) and 22who converted toMCIwithin

48months (c-HC). Anatomical magnetic resonance (MR) imageswere analyzed using a

semi-automatic approach that combinesprobabilisticmethodsandapriori information

from ex vivo MR images and histology to segment and obtain quantitative structural

metrics for different amygdala subfields in each participant. Spearman’s correlations

wereperformedbetweenMRmeasures andbaseline and longitudinal neuropsycholog-

ical measures.We also included anatomical measurements of the whole amygdala, the

hippocampus, a key target of AD-related pathology, and thewhole cortical thickness as

a test of spatial specificity.

Results:Comparedwith s-HC individuals, c-HC subjects showed a reduced right amyg-

dala volume, whereas no significant differencewas observed for hippocampal volumes

or changes in cortical thickness. In the amygdala subfields, we observed selected
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atrophy patterns in the basolateral nuclear complex, anterior amygdala area, and tran-

sitional area.Macro-structural alterations in these subfields correlatedwith variations

of global indices of cognitive performance (measured at baseline and the 48-month

follow-up), suggesting that amygdala changes shape the cognitive progression toMCI.

Discussion: Our results provide anatomical evidence for the early involvement of the

amygdala in the preclinical stages of AD.

KEYWORDS

Alzheimer’s disease (AD), amygdala, magnetic resonance imaging (MRI), mild cognitive impair-
ment (MCI), preclinical, subfields

Highlights

∙ Amygdala’s atrophymarks elderly progression tomild cognitive impairment (MCI).

∙ Amygdala’s was observedwithin the basolateral and amygdaloid complexes.

∙ Macro-structural alterations were associated with cognitive decline.

∙ No atrophywas found in the hippocampus and cortex.

1 BACKGROUND

Alzheimer’s disease (AD) is a common age-related neurodegenerative

form of dementia.1 Abnormal deposits of aggregated proteins, specif-

ically hyper-phosphorylated tau and β-amyloid (Aβ), play a crucial role
in AD development. However, other molecular determinants actively

participate in the process.2 Aβ accumulation initiates in medial cor-

tical regions, including the precuneus, whereas tau pathology begins

to propagate from hippocampal areas.1 Clinically, AD is character-

ized by progressive and irreversible cognitive/behavioral deficits1 that

result from a prolonged pathological evolution, beginning with an

extended preclinical period (15 to 20 years) and evolving through a

prodromal phase known as mild cognitive impairment (MCI, 6 to 8

years). Although the early stage of the disease is a critical window to

develop and implement effective therapeutic interventions and pro-

mote resilience to cognitive decline,3 identifying subjects at risk of

developing AD still represents a tentative effort.

Magnetic resonance imaging (MRI) is a non-invasive, powerful

tool that can quantify, in vivo, brain macro-structural modifications

across the AD spectrum, thus potentially identifying early signs of

deterioration.4 MRI studies have predominantly focused on identify-

ing grey matter (GM) biomarkers of the conversion fromMCI to AD.5,6

Since the spread of tau pathology represents a key neuropathological

determinant of cognitive decline associated with AD,1 most of these

studies investigated themesial temporal lobe (MTL),7,8 such as the hip-

pocampal formation. However, little is still known about the earlier

macro-structural signs of the conversion from cognitively healthy (HC)

subjects to MCI. Some evidence has shown that the hippocampus and

entorhinal cortex become atrophic in Aβ-positive cognitively normal

individuals9 or HC subjects.10 However, no hippocampal alterations

have been observed in community-dwelling individuals lamenting

subjective cognitive decline.8

During the preclinical period, another structure of the MTL, the

amygdala, manifests early signs of AD pathology.11 The process runs

alongside aberrant tau accumulation in the hippocampus.12 The amyg-

dala has bidirectional connections with multiple sensory and multi-

sensory areas and projects to the MTL, the basal ganglia, and other

subcortical structures.13 Functionally, the amygdala is associated with

emotion and memory processing,14 especially in consolidating affec-

tively influenced memories. However, additional primate and human

research indicates a more general role of the amygdala in cognition,

such as in attention, stimulus value representation, and decision-

making.14 To date, the evaluation of the early morphometric MRI

modifications of the amygdala is still incomplete.10,15–17

The atrophy of the whole amygdala, associated with cognitive

decline, has been demonstrated in individuals with subjective cogni-

tive decline16,17 or in Aβ-positive subjects with concurrent cognitive

deficits15 who had no history of long-term illness and did not meet the

criteria for MCI/dementia. A recent MRI study has shown a faster rate

of amygdala atrophy in subjects progressing fromHC toMCI and from

MCI to AD.10 However, the structural substrates involving the amyg-

dala in these preclinical stages remain unclear. In particular, a potential

limitation of previous studies is that the amygdala has been treated as a

whole, while this structure encompasses heterogeneous subfields. The

reason for considering the underlying anatomical and functional diver-

sity of the amygdala is that its constituent nuclei are segregated not

only by their architecture and connectivity patterns but also by their

vulnerability to age-related neurodegenerative disorders.18 A seminal

study19 indicated a specific accumulation of AD-related neuropathol-

ogy in nuclei receiving and giving rise to hippocampal projections
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(eg, the accessory basal nucleus, the cortical nuclei, and the cortical

transition area).

In contrast, the medial and central nuclei were relatively spared. In

this context, the atrophy of distinct amygdala subfieldsmay participate

in the clinical progression ofMCI.

In the present study, we tested whether healthy individuals who

convert to MCI exhibits atrophy of the whole amygdala or its spe-

cific subfields. Based on previous evidence,19 we expected to observe

higher/selective effects on the accessory basal nucleus, the cortical

nuclei, and the cortical transition area. To further investigate the speci-

ficity of amygdala atrophy in characterizing the progression of HC

subjects to MCI, we incorporated structural measurements of regions

exhibiting early signs of tau pathology, that is, the hippocampus and

the whole cortical mantle. Based on the hypothesis of early involve-

ment of the amygdala in AD-relatedmacrostructural degeneration, we

hypothesized a significant association between the atrophy of amyg-

dala subfields and cognitive decline in converter subjects. To test these

predictions, we applied a semi-automatic approach that combines

probabilistic methods and a priori information from ex vivo MRI and

histology to segment and quantitatively measure, subject-by-subject,

the volume of each amygdala subfield.20 Our study sample used the

AD Neuroimaging Initiative 3 (ADNI-3) and evaluated 97 HC individu-

als who underwent a longitudinal neurocognitive assessment to detect

early signs of MCI. Subjects were assigned into two groups based

on a clinical follow-up: 75 individuals who remained stable within 48

months (s-HC) and 22 who converted to MCI within 48 months (c-

HC). Finally, we examined whether the atrophy of the whole amygdala

or distinct amygdala subfields correlates with variations of cognitive

performance scores obtained at baseline or at the time of the MCI

diagnosis.

2 METHODS

Details on the studyprotocol are reportedon theADNIwebsite (http://

www.adni-info.org). Figure S1 and Supplementarymaterials report the

flow chart and details of the study sample selection.

2.1 Neuropsychological assessments

Participants underwent a comprehensive neuropsychological assess-

ment, including the Rey Auditory Verbal Learning Test (RAVLT)21 and

LogicalMemory II (LM), a subscale of theWechslerMemory–Revised22

to investigate memory and learning; the animal fluency test23 and

the Multilingual Naming Test–MINT24 to assess language proficiency;

the clock drawing test (CDT) to explore visuospatial functions,25

and the Trail Making Test (TMT), parts A and B, to evaluate atten-

tion/executive functions.26 In addition, the battery of tests on global

functioning included the Mini-Mental State Examination (MMSE) and

the Montreal Cognitive Assessment (MoCA); the Functional Activities

Questionnaire (FAQ) for the assessment of daily living activities27; the

Alzheimer’s Disease Assessment Scale-Cognitive subscales (ADAS-11

RESEARCH INCONTEXT

1. Systematic review: Theearly stageofAlzheimer’s disease

(AD) is a critical window for developing and implement-

ing effective therapeutic interventions and promoting

resilience to cognitive decline; however, identifying sub-

jects at risk of developing AD still represents a tentative

effort.

2. Interpretation: The current study found that the progres-

sion from healthy cognition to mild cognitive impairment

(MCI) is associated with significant atrophy in the right

amygdala and its constituentnuclei. Specifically, graymat-

ter changes in three subfields showed a correlation with

cognitive deficits and decline, while the whole cortex

and hippocampus did not exhibit atrophy. These results

highlight the importance of analyzing amygdala subfield

atrophy and conducting follow-ups to detect early cogni-

tive decline in individuals initially classified as “cognitively

healthy.”

3. Future directions: Future investigations should employ

longitudinal designs with multiple time points, enabling

a comprehensive examination of the dynamic processes

involved in the transition from normal aging toMCI.

items scores; ADAS-13 items scores; ADAS-Q4 delayed word recall

subscale) to evaluate the severity of impairments of memory, learning,

language, praxis, and orientation.28 The Neuropsychiatric Inventory

(NPI) and theGeriatric Depression Scale (GDS)were also administered

to obtain information on behavioral disturbances.29,30

2.2 MRI data acquisition and analysis

T1-weighted images were processed with FreeSurfer 7.3 using the

“recon-all -all” command line (see details in Supplementary materials).

The “segmentHA_T1.sh” script subsequently computed the parcella-

tion and volume quantification of amygdala subfields. The amygdala

was segmented into nine subfields for each hemisphere (Figure 1):

the accessory basal nucleus, the anterior amygdaloid area (AAA), the

basal nucleus, the central nucleus, the cortical-amygdaloid transition

area (CATA), the lateral nucleus, and the paralaminar nucleus.20 The

volumes were normalized (divided) by the estimated total intracranial

volumes.

2.3 Statistics

Group differences in demographics, neuropsychological measures, and

imaging variables were assessed using two-tailed independent t-tests

for continuous variables, while categorical variables were analyzed
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F IGURE 1 Representative image showingmagnetic resonance imaging segmentation of the amygdala and its subfields. The upper panel shows
the segmented left and right amygdala (colored in light blue). The lower panel displays the parcellation of the right amygdala into nine subfields.
The images were in the neuroradiological convention.

using chi-square tests.Within the c-HC group, Spearman’s correlations

were conducted to examine possible relationships between the vol-

ume of atrophic subfields and the neuropsychological outcomes that

showed statistical differences between the two groups at baseline and

at the 48-month follow-up. All analyses applied false discovery rate

(FDR) correction to account for multiple comparisons.

3 RESULTS

3.1 Demographic and clinical features

The two groups were matched for age, sex, and educational level.

In the analysis performed on behavioral tests at baseline (Table 1),

the s-HC and c-HC subsets differed on measures of global cogni-

tion (ADAS-11/13, MMSE), episodic memory learning and retrieval

(RAVLT and LM, Immediate Recall, ADAS-Q4, RAVLT-DR/RN and LM

Delayed Recall), visuospatial ability (CDT), animal fluency, and execu-

tive functions (TMT-B). No between-group differences were observed

in other cognitive domains. The NPI total scores showed no signifi-

cant differences when comparing the neuropsychiatric subscales that

showed variance (ie, mean score >0). The GDS scores, examining the

major depressive tract, were significantly higher in c-HC individuals

than in s-HC subjects. We also examined the longitudinal variation in

neuropsychological characteristics between the stable, healthy con-

trol s-HC and the c-HC groups. This analysis allowed us to track

changes over time in these key aspects within each group and com-

pare any observed differences between them. Table 2 shows that the

c-HC subsets exhibited a more significant impairment in global cogni-

tion measures such as the ADAS-11/13 and FAQ. Additionally, there

was an impairment in a test of immediate memory (RAVLT-IR) and

neuropsychiatric symptoms (NPI total scores).

3.2 MRI volumetry

C-HC, compared to s-HC individuals, exhibited a reduced volume of

the right but not the left amygdala (Table 3). However, the atrophy of

the right amygdala did not extend to all its subfields (Table 4; Figure 2).

Compared with the s-HC group, the c-HC group showed significantly

decreased volume in the lateral, basal, and accessory basal nuclei

and the AAA and the CATA. Notably, we did not observe atrophy in

the remaining subfields, even when considered without correction for

multiple comparisons. No significant between-group differences were

observed in terms of hippocampal volume andwhole-brain thickness.

3.3 Relationship of MRI measures with behavioral
aspects at baseline

We then examined the correlation between the macrostructural alter-

ation of the right amygdala subfields exhibiting significant atrophy

in c-HC and scores on the neuropsychological tests that revealed a

significant group difference at baseline (Table S2). The lower volume

of the right lateral nucleus, accessory basal nucleus, and AAA was

associated with a more severe deficit in global cognition, as indicated
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TABLE 1 Demographic, neuropsychological, and clinical characteristics assessed at baseline of two groups: stable (s-HC) and converter
healthy control (c-HC).

s-HC subjects c-HC subjects

Variables Mean SD Mean SD p-value

Demographic information Age 74.8 6.3 75.6 7.5 0.599

Educational level (years) 17.3 2.3 16.2 2.7 0.076

N (%Male) 35 (46.6%) 9 (41%) 0.361a

General cognition ADAS-11 5.1 2.6 7.0 4.6 0.014

ADAS-13 7.7 4.0 11.5 7.5 0.002

MMSE 29.4 0.8 27.9 1.8 <0.001

MOCA 25.9 5.8 23.3 5.8 0.075

FAQ 0.2 0.7 0.4 0.7 0.360

Learning andMemory RAVLT-IR 48.7 11.0 41.3 8.0 0.004

RAVLT-DR 9.0 4.2 5.7 4.1 0.001

RAVLT-RN 13.1 2.5 11.3 3.0 0.005

RAVLT-L 5.4 2.4 5.6 2.4 0.689

RAVLT-TOT 13.8 1.9 12.1 2.6 0.001

ADAS-Q4 2.3 1.7 3.6 2.9 0.011

LM-IR 15.7 3.2 12.4 4.8 <0.001

LM-DR 14.7 3.5 10.7 4.2 <0.001

Visual-spatial ability CDT 4.8 0.5 4.5 0.7 0.013

CDC 4.8 0.5 4.6 1.1 0.158

Executive functions TMT-A 29.4 7.9 32.0 1.8 0.210

TMT-B 64.9 26.8 101.0 63.3 <0.001

Language AF 22.7 4.9 20.4 3.9 0.042

MINT SC 0.3 0.7 0.5 0.7 0.143

MINT total 29.7 6.3 28.7 3.1 0.457

Neuropsychiatry NPI TOTAL 1.2 2.7 1.4 2.9 0.752

Depression GDS 0.7 1.1 1.6 2.5 0.018

Notes: Values are expressed asMean± Standard Deviation (SD). The tests showing a significant difference between groups are in bold.

Abbreviations: ADAS, Alzheimer’s Disease Assessment Scale; ADAS-Q4, ADAS delayed word recall subscale; AF, animal fluency; c, converter; CDC, clock

drawing—copy score; CDT, clock drawing test, total score; FAQ, Functional Activities Questionnaire; GDS, Geriatric Depression Scale; HC, healthy con-

trols; LM-DR, Logical Memory-Delayed Recall Total Number of Story Units Recalled; LM-IR, Logical Memory-Immediate Recall Total Number of Story Units

Recalled; MINT, Multilingual Naming Test Correct (Uncued + Correct with Semantic cue); MMSE, Mini-Mental State Examination; MoCA, Montreal Cogni-

tive Assessment; NPI, Neuropsychiatric Inventory Questionnaire; RAVLT-DR, Rey’s Auditory Verbal Learning Test, 30 min Delayed Recall; RAVLT-IR, Rey’s

Auditory Verbal Learning Test, Immediate Recall (sum of 5 trials); RAVLT-L, Rey’s Auditory Verbal Learning Test-Learning score (Trial 5− Trial 1); RAVLT-RN,

Rey’s Auditory Verbal Learning Test Delayed Recognition; RAVLT-TOT, Rey’s Auditory Verbal Learning Test, Trials 1 through 6; s, stable; TMT, Trail Making

Test.
achi-square.

by a negative correlation with the ADAS-11/13 (higher scores) on

these scales indicatingmore significant cognitive impairment. Further-

more, there was a positive correlation with the MMSE scores (lower

scores on these scales indicate greater cognitive impairment). The right

accessory basal nucleus atrophywas further positively associatedwith

deficits of immediate memory, as indicated by a significant correla-

tion with the RAVLT-IR (lower scores on these scales indicate greater

cognitive impairment). Notably, no significant correlationwith the neu-

ropsychological scoreswas observedwhen considering thewhole right

amygdala (Table S3).

3.4 Relationship of MRI measures with
longitudinal behavioral tests

Finally, we assessed the presence of a significant correlation between

the imaging outcomes and the longitudinal variation in cognitive and

neuropsychiatric tests (Table 5). Specifically, we observed that the

lower volume of the right lateral nucleus, basal accessory and basal

nuclei, andAAAwas associatedwith amore severedeficit in global cog-

nition, as evidenced by a negative correlation with the ADAS-11/13

and FAQ scores. Additionally, the atrophy of the right lateral nucleus,
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TABLE 2 Longitudinal variation in demographic, neuropsychological, and clinical characteristics of the stable healthy control (s-HC) and
converter healthy control (c-HC) groups.

s-HC subjects c-HC subjects

Test N Mean SD N Mean SD t gl p-value

ADAS-11 75 −0.155 2.95 21 3.60 3.87 −4.806 94 <0.001

ADAS-13 75 0.552 4.07 21 4.80 5.48 −3.898 94 <0.001

ADAS-Q4 75 0.547 1.51 22 1.09 2.04 −1.366 95 0.175

MMSE 73 1.36 4.99 22 .863 2.82 0.441 93 0.660

MOCA 71 −0.296 5.43 21 2.43 7.83 −1.815 90 0.073

FAQ 70 0.114 1.08 22 1.41 3.38 −2.808 90 0.006

RAVLT-IR 75 2.05 7.67 22 6.36 4.54 −2.504 95 0.014

RAVLT-DR 75 0.773 3.96 22 .636 3.53 .146 95 0.884

RAVLT-RN 75 0.853 3.63 22 0.273 3.55 0.663 95 0.509

RAVLT-TOT 75 0.760 2.58 22 −0.273 3.84 1.464 95 0.146

RAVLT-L 75 −0.280 2.73 22 0.091 2.94 −0.551 95 0.583

LM-IR 75 −0.280 3.05 22 0.364 4.80 −0.756 95 0.451

LM-DR 75 −0.013 2.91 22 0.773 3.37 −1.076 95 0.285

CDT 75 −0.053 0.490 22 0.046 1.68 −0.453 95 0.651

CDC 75 −0.080 0.610 22 −0.182 1.18 0.543 95 0.588

TMT-A 73 5.4 11.4 22 2.8 14.2 0.881 93 0.381

TMT-B 73 14.2 31.0 22 1.5 81.5 0.314 93 0.754

AF 75 0.613 5.48 22 3.14 5.38 −1.907 95 0.060

MINT SC 75 −0.280 3.68 22 0.227 0.751 −0.641 95 0.523

MINT total 75 0.253 9.92 22 5.05 11.7 −1.913 95 0.059

NPI TOTAL 75 0.360 3.82 22 3.32 5.48 −2.876 95 0.005

GDS 74 0.743 1.95 22 0.955 2.54 −0.415 94 0.679

Notes: Values are expressed asMean± Standard Deviation (SD). The tests showing a significant difference between groups are in bold.

Abbreviations: ADAS, Alzheimer’s Disease Assessment Scale; ADAS-Q4, ADAS delayed word recall subscale; AF, animal fluency; c, converter; CDT, clock

drawing test, total score; CDC, clock drawing—copy score; FAQ, Functional Activities Questionnaire; GDS, Geriatric Depression Scale; HC, healthy con-

trols; LM-DR, Logical Memory-Delayed Recall Total Number of Story Units Recalled;LM-IR, Logical Memory-Immediate Recall Total Number of Story Units

Recalled; MINT, Multilingual Naming Test Correct (Uncued + Correct with Semantic cue); MMSE, Mini-Mental State Examination; MoCA, Montreal Cogni-

tive Assessment; NPI, Neuropsychiatric Inventory Questionnaire; RAVLT-DR, Rey’s Auditory Verbal Learning Test, 30 min Delayed Recall; RAVLT-IR, Rey’s

Auditory Verbal Learning Test, Immediate Recall (sum of 5 trials); RAVLT-L, Rey’s Auditory Verbal Learning Test-Learning score (Trial 5− Trial 1); RAVLT-RN,

Rey’s Auditory Verbal Learning Test Delayed Recognition; RAVLT-TOT, Rey’s Auditory Verbal Learning Test, Trials 1 thorugh 6; s, stable; TMT, Trail Making

Test.

TABLE 3 Volumetric analysis of the right and left amygdala.

s-HC subjects c-HC subjects
Structure

volume/eTIV Meana SD Meana SD t95 FDR corrected p Cohen’s d Effect size

L-Amygdala 0.00099 0.00013 0.00095 0.00014 1.317 0.366 0.319 Small

R-Amygdala 0.00113 0.00015 0.00102 0.00016 2.740 0.042 0.664 Intermediate

L-Hippocampus 0.00253 0.00025 0.00246 0.00030 1.171 0.366 0.284 Small

R-Hippocampus 0.00262 0.00028 0.00248 0.00035 1.943 0.165 0.471 Small

Notes: Values are expressed asmean± standard deviation (SD). The volumes showing a significant difference between groups are in bold.

Abbreviations: c, converter; eTIV, estimated Total Intracranial Volume; FDR, false discovery rate; HC, healthy controls; L, left; R, right; s, stable.
aValues x10−4.
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TABLE 4 Volumetric analysis of the right amygdala subfields.

s-HC subjects c-HC subjects

Between-group

comparison
R-Amygdala

nucleus/eTIV Meana SDa Meana SDa t95 FDR p-value Cohen’s d Effect size

Lateral 4.37 0.463 4.01 5.14 3.17 0.018 0.769 Large

Basal 2.94 0.35 2.74 3.45 2.30 0.047 0.558 Intermediate

Accessory Basal 1.69 0.22 1.56 2.68 2.41 0.047 0.584 Intermediate

AAA 0.34 0.06 0.33 0.05 2.27 0.047 0.550 Intermediate

Central 0.31 0.06 0.28 0.07 1.77 0.120 0.429 Small

Medial 0.15 0.04 0.14 0.04 0.94 0.349 0.228 Small

Cortical 0.17 0.03 0.15 0.03 1.62 0.123 0.393 Small

CATA 1.13 .15 1.04 0.14 2.44 0.047 0.592 Intermediate

Paralaminal 3.34 0.40 3.24 0.35 1.60 0.117 0.388 Small

Notes: Values are expressed asMean± Standard Deviation (SD). The volumes showing a significant difference between groups are in bold.

Abbreviations: AAA, anterior amygdaloid area; c, converter; CATA, cortico-amygdaloid transition area; eTIV, estimated Total Intracranial Volume; FDR, false

discovery rate; HC, healthy controls; s, stable.
aValues x10−4.

F IGURE 2 Box plots displaying the within-group distribution of magnetic resonance imagingmeasures for the atrophic subfields. This
visualization allows for a comparison of the variability and range of the volume/eTIVmeasures between stable healthy control (s-HC) and
converter healthy control (c-HC) subjects. Error bars represent the standard error. AAA, anterior amygdaloid area; CATA, cortical-amygdaloid
transition area.

basal, and AAA was further associated with immediate memory per-

formance, as indicated by a significant correlation with the RAVLT-IR

scores. No relationship was found between the whole amygdala vol-

ume and the longitudinal neuropsychological test scores (Table S4).

4 DISCUSSION

The current study indicates that the clinical progression toward MCI

is preceded by significant atrophy of the right amygdala and five
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TABLE 5 Relationships between the volume of atrophic amygdala nuclei and the longitudinal neuropsychological test scores showing
significant variation during follow-up.

Right

lateral nucleus

Right

basal nucleus

Right accessory basal

nucleus

Right

AAA

Right

CATA

Test rho

FDR

corrected p rho

FDR

corrected p rho

FDR

corrected p Rho

FDR

corrected p rho

FDR

corrected p

ADAS-11 −0.576 0.008 −0.509 0.008 −0.573 0.013 −0.508 0.008 −0.542 0.164

ADAS-13 −0.628 0.027 −0.507 0.027 −0.614 0.046 −0.523 0.027 −0.559 0.418

RAVLT-IR 0.537 0.010 0.448 0.010 0.547 0.010 0.317 0.010 0.481 0.208

FAQ −0.574 0.027 −0.559 0.027 −0.551 0.189 −0.607 0.015 −0.507 0.347

Note: The significant correlations are in bold.
Abbreviations: AAA, anterior amygdaloid area; ADAS, Alzheimer’s Disease Assessment Scale; CATA, cortico-amygdaloid transition area; FAQ, Functional

Activities Questionnaire; FDR, false discovery rate; RAVLT-IR, Rey’s Auditory Verbal Learning Test, Immediate Recall (sum of 5 trials).

constituent nuclei. Notably, only the macro-structural gray matter

alterations of three of these subfields, but not of the entire amygdala,

showed a significant correlation with global cognitive deficits already

observed at baseline and with the decline in global cognitive func-

tions observed in MCI patients. Furthermore, our study revealed the

absence of atrophy of the whole cortex and, in particular, of the hip-

pocampus, a region that is an early target of AD pathology. While this

finding supports the specificity of our results, it also suggests that the

observed alterations in the amygdala subfields are not simply a reflec-

tion of generalized brain changes associated with AD. Furthermore,

the absence of evident atrophy in other cortical/subcortical structures

argues against the possibility that signs of amygdala atrophy reflect

the loss of projecting axons/dendrites belonging to neurons located in

other structures31 rather than by local cellular loss. Thus, we stress the

importance of incorporating amygdala subfield atrophy analysis and

conducting clinical follow-ups to identify individuals experiencing sub-

clinical cognitive decline, particularly among those initially classified as

“cognitively healthy” during the baseline evaluation.

4.1 Evidence for the atrophy of the amygdala in
the progression to MCI

Converging evidence indicates that the amygdala is a crucial locus for

the transition from a harmless clinical condition to a more aggressive

disease since multiple protein types (Aβ, tau, a-synuclein, and TDP-43)
aremisfolded in this structure.11 Postmortem studies have highlighted

that, just following the MTL, the amygdala is primarily involved in AD-

related taupathology.12 Other studieshavedemonstrated that the rate

of atrophy of the amygdala is similar to that of the hippocampus in

mild32 and full-blown AD.33 At the preclinical AD stage, the atrophy

of the whole amygdala has been associated with cognitive deficits in

visual, verbal, and emotional memory performance.33,34

In agreement, morphological and functional changes have also been

reported in the lateral nucleus of the amygdala of preclinical mod-

els of amyloid pathology.35 Although the exact mechanisms of such

region-specific vulnerability are still unclear, recent findings indicate

that early inflammatory processes in the amygdala could contribute to

the neuronal demise observedwith AD progression.36

The present results confirm and extend the findings of previous

studies indicating atrophy of the whole amygdala in individuals with

subjective cognitive decline16,17 and in Aβ-positive subjects with con-

current cognitive deficits.15 We show that signs of atrophy can be

detected before the manifestation of deficits contributing to the clas-

sification of MCI, indicating that the c-HC population is biologically

distinguishable from s-HC individuals. These results are consistent

with the recent work of Stouffer and colleagues,10 who highlighted the

emergent role of the amygdala in AD progression, showing a signifi-

cantly faster rate of atrophy, paralleling the entorhinal cortex, in HC

who progress to MCI and in MCI converting to AD, when compared

with individuals who remain stable.10

The lateralization of atrophy in AD has been extensively debated.

Previous MRI studies have produced conflicting results, with studies

suggesting higher susceptibility to neurodegeneration in the left37 or

in the right hemisphere.5,10,16 Our findings support the latter view,

revealing a selective right-lateralized pattern of neuronal loss, which

agrees with our5 and previous findings by other groups.16 and Stouffer

and colleagues.10

4.2 Anatomical specificity of amygdala’s atrophy

The amygdala is a heterogeneous structure consisting of basolateral,

centromedial, and cortical nuclear complexes with extensive connec-

tions with several cortical and subcortical structures.13 Its constituent

nuclei are segregated not only by their architecture and connectivity

patterns but also by their vulnerability to age-related neurodegener-

ative disorders.18 Based on a seminal study19 that reported a specific

accumulation of AD-related neuropathology in nuclei with a bidi-

rectional connection with the hippocampus (eg, the accessory basal

nucleus, cortical nuclei, and the cortical transition area), we hypoth-

esized that they might also show early signs of atrophy in individuals

whowill eventually manifest cognitive decline. Our results are, in large

part, consistent with this prediction.
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Weobserved that when compared with s-HC individuals, c-HC sub-

jects were characterized by selective atrophy in the right basolateral

nuclear complex, a heterogeneous structure encompassing the lateral

nucleus, the basal nucleus, and the accessory basal nucleus. The baso-

lateral nuclear complex, by its multiple connections with cortical and

subcortical regions,13 participates in a wide range of cognitive func-

tions such as the processing and integration of multimodal stimuli,

associative and emotional learning, as well as episodic memory forma-

tion, consolidation, and retrieval.13 Our findings also match previous

evidence reporting that the amygdala’s accessory basal and lateral

nuclei display shape changes and volumetric loss ranging from 14% to

60% in AD patients compared to HC subjects.32,38

Other nuclei showing atrophy in c-HC compared to s-HC individ-

uals were the superficial amygdala subnuclei such as the AAA and

CATA. Anatomically, the AAA corresponds to themost rostral and dor-

sal portion of the amygdaloid complex.38,39 At the pathological level,

AAA atrophy has been associated with AD.40 The AAA, through its

multiple connectionswith the hippocampus, basal forebrain, and brain-

stem cholinergic structures,11 is involved in sustaining attention and

memory.41 It is well known that cholinergic deficits play a key role in

the neuropathology of AD, not only in late disease but also in pre-

clinical and early stages.42 Accumulated abnormal phosphorylated tau

has been found specifically in the cholinergic neurons of the basal

forebrain in cognitively normal older adults and MCI patients. It cor-

relates with performance inmemory tasks.43 Furthermore, cholinergic

pathology (eg, thickened cholinergic nerve fibers and ballooned termi-

nals) has been found inmiddle-aged adults. The process increases with

age, suggesting that cholinergic loss in established AD is preceded by

preclinical alterations.44

The underlying mechanism may be sustained by the anatomic loca-

tion of cholinergic pathways (eg, the nucleus basalis magnocellularis)

in the cortico-limbic belt of the forebrain, which includes limbic struc-

tures such as the amygdala, hippocampus, and entorhinal cortex. All of

those regions are highly vulnerable to neurofibrillary degeneration and

neurofibrillary tangle formation starting from the early stages of AD.45

On the other hand, the CATA is part of the so-called “olfactory amyg-

dala.” It has strong connections with the olfactory bulbs, hippocampal

formation, and parahippocampal cortices, supporting its involvement

in memory and general cognition.14 The atrophy of the CATA is in line

with previous evidence showing the subcortical origin and ascending

propagation of the AD-related tau cytoskeletal pathology46 as well as

with a recent study by Kamath and colleagues47 reporting a relation-

ship between olfactory impairment and smaller amygdala GM volume

in HC elderly subjects.

4.3 Relationship with cognitive decline

Further support for the anatomical specificity of the amygdala’s

atrophy comes from the analysis of the relationship with the scores

of neuropsychological tests, which differentiate between c-HC and

s-HC individuals at baseline and the 48-month follow-up. While the

measure of global atrophy showed no significant association with

indicators of cognitive performance, the volume of three out of five

identified subfields showed a significant association with the degree

of global cognitive functioning at baseline, as assessed by the MMSE

and ADAS-Cog-11/13. This result is particularly intriguing, as the

structural integrity of amygdala subfields appears to track the onset of

subtle cognitive deficits that only manifest later at the individual level.

Notably, the volume of the same nuclei displayed a similar relationship

with the decline of general cognitive functions observedwhen patients

are finally diagnosedwithMCI.

It is important to stress that the observation of a significant corre-

lation between amygdala atrophy and neuropsychological assessment

does not imply a causal relationship between these two variables. It

is plausible that the two phenomena are independent expressions of

the same underlying cause, that is, the MCI progression. However,

some recent findings suggest a close relationship between amygdala

atrophy and memory performance.48,49 For example, the link between

the atrophy of the accessory basal nucleus and the impairment in

immediate memory, measured by the RAVLT-IR, that we observed

in the present study fits well with the results of a machine-learning

approach that demonstrated that amygdala atrophy is among the best

predictors for estimating immediate scores on the RAVLT.49 However,

we did not find a significant relationship between the atrophy of

distinct amygdala subfields and specific measures of delayed memory

(eg, RAVLT-DR/RN, ADAS-Q4 subscale), as would be expected based

on the role of the amygdala in long-term memory retrieval14 and

the centrality of episodic memory deficits along the AD spectrum.

One possible explanation for this apparent discrepancy is that the

amygdala predominantly supports memory for emotionally arousing

experiences50 by biasing activity in other MTL structures. In contrast,

standard neuropsychological batteries typically focus on the encoding

and retrieval of emotionally neutral information. According to this

view, a significant association might be found when looking at memory

for emotionally-charged events, a hypothesis that should be tested

in future studies. Finally, the more significant longitudinal variation

in NPI total scores in c-HC subjects than in s-HC individuals vis-a-vis

the amygdala’s role in emotional functioning suggests a possible

association between morphometric alteration and neuropsychiatric

symptoms. However, the lack of a significant correlation between the

MRImeasures and theNPI total score ismore consistent with the view

that the significant increase of longitudinalNPI in converters co-occurs

with the other underlying neuropathology rather than being a direct

manifestation of the amygdala’s atrophy. In general, further studies

are needed to assess the nature of the association between neural

and neuropsychological early signs of MCI progression. These studies

should include more specific scales targeting emotions and mood,

as well as their relationship with episodic memory, but also specific

analyses (eg, predictive, longitudinal) able to assess the presence of a

causal relationship between variables.

4.4 Study limitations

Finally, we recognize that our study has some limitations. First, despite

the richness of the ADNI3 database, the resulting sample size used
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in the present study was relatively small. However, our study cohorts

underwent stringent inclusion criteria for the definition of both s-

HC and c-HC subjects. In that regard, our descreening procedure for

selecting the study sample, based on follow-up data (ie, same diagnosis

after 48months), allowed us to define s-HC subjects better. Additional

studies would be needed to confirm and extend the present results

in larger cohorts. Second, this study is cross-sectional because we

analyzed and compared data at baseline. Considering the usefulness

of longitudinal analyses in detecting temporal variations in GM vol-

ume deterioration with significantly improved volumetric reliability,51

future studies should investigate differences across multiple time

points tounravel thedynamicprocessesunderpinning thenormal aging

to MCI transition. Third, we opted for a semi-automated method as

it allows the processing of large samples. However, we acknowledge

that semi-automated methods (implemented in FreeSurfer, ANTS, and

FSL) can also overestimate the amygdala’s volume52 compared with

manual segmentation,which is still considered the gold standard.How-

ever, the semi-automatic method used in the present work has been

shown to minimize the risk of volume overestimation compared to

other methods.52 Segmentation algorithms integrated into FreeSurfer

use ex vivo MRI data from autopsy brains to delineate the amyg-

dala nuclei and construct a probabilistic atlas of amygdala anatomy.20

Specifically, nine amygdala nuclei were parceled based on human and

animal histology literature and the knowledge of boundaries visible

in the ex vivo images. Crucially, this tool has already been applied

to standard-resolution T1 data from the ADNI dataset, successfully

discriminating between participants with AD and control participants

based on the amygdala’s subfield.20 Therefore, our study translated

an already established method to study a different population. More-

over, comparedwith approaches that aim to estimate probability maps

in reference spaces, the present approach considers individual under-

lying anatomy, thus providing greater spatial sensitivity. While these

previous studies employed slightly larger sample sizes, the present

study harnesses recent advancements in probabilistic modeling (ie,

Bayesian modeling) to consider individual anatomy to parcellate the

amygdala’s nuclei. Fourth, another critical limitation of this study is

the lack of specific measurements for affective disturbances and sen-

sory processing that may be present in the whole AD spectrum and

its preclinical stage. Implementingmore tailored questionnaires would

allow the exploration of associations between neuropsychological and

morphometric variations. Fifth, we did not distinguish between non-

amnestic and amnestic MCI groups because the size of the sample was

inadequate, and the clinical information from ADNI-3 does not permit

distinguishing between subgroups easily.

5 CONCLUSIONS

Our results shed light on the amygdala’s involvement in the preclinical

stage of AD, suggesting that GM atrophy of its specific nuclei predicts

the cognitive decline and the prodromal progression of HC subjects to

MCI, independently from the future clinical evolution.
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